Aerolysin Induces G-protein Activation and Ca Release from Intracellular Stores in Human Granulocytes*
نویسندگان
چکیده
Aerolysin is a pore-forming toxin that plays a key role in the pathogenesis of Aeromonas hydrophila infections. In this study, we have analyzed the effect of aerolysin on human granulocytes (HL-60 cells). Proaerolysin could bind to these cells, was processed into active aerolysin, and led to membrane depolarization, indicating that granulocytes are potential targets for this toxin. Fura-2 measurements were used to analyze the effect of aerolysin on cytosolic [Ca] homeostasis. As expected for a pore-forming toxin, aerolysin addition led to Ca influx across the plasma membrane. In addition, the toxin triggered Ca release from agonist and thapsigargin-sensitive intracellular Ca stores. This Ca release was independent of the aerolysin-induced Ca influx and occurred in two kinetically distinct phases: an initial rapid and transient phase and a second, more sustained, phase. The first, but not the second phase was sensitive to pertussis toxin. Activation of pertussis toxin-sensitive G-proteins appeared to be a consequence of pore formation, rather than receptor activation through aerolysinbinding, as it: (i) was not observed with a binding competent, insertion-incompetent aerolysin mutant, (ii) had a marked lag time, and (iii) was also observed in response to other bacterial pore-forming toxins (staphylococcal a-toxin, streptolysin O) which are thought to bind to different receptors. G-protein activation through pore-forming toxins stimulated cellular functions, as evidenced by pertussis toxin-sensitive chemotaxis. Our results demonstrate that granulocytes are potential target cells for aerolysin and that in these cells, Ca signaling in response to a pore-forming toxin involves G-proteindependent cell activation and Ca release from intracellular stores.
منابع مشابه
Aerolysin induces G-protein activation and Ca2+ release from intracellular stores in human granulocytes.
Aerolysin is a pore-forming toxin that plays a key role in the pathogenesis of Aeromonas hydrophila infections. In this study, we have analyzed the effect of aerolysin on human granulocytes (HL-60 cells). Proaerolysin could bind to these cells, was processed into active aerolysin, and led to membrane depolarization, indicating that granulocytes are potential targets for this toxin. Fura-2 measu...
متن کاملPresynaptic roles of intracellular Ca(2+) stores in signalling and exocytosis.
The signalling roles of Ca(2+)(ic) (intracellular Ca(2+)) stores are well established in non-neuronal and neuronal cells. In neurons, although Ca(2+)(ic) stores have been assigned a pivotal role in postsynaptic responses to G(q)-coupled receptors, or secondarily to extracellular Ca(2+) influx, the functions of dynamic Ca(2+)(ic) stores in presynaptic terminals remain to be fully elucidated. In ...
متن کاملEstradiol-stimulated nitric oxide release in human granulocytes is dependent on intracellular calcium transients: evidence of a cell surface estrogen receptor.
We tested the hypothesis that estrogen acutely stimulates constitutive nitric oxide synthase activity in human granulocytes by acting on a cell surface estrogen receptor (ER). The release of nitric oxide was measured in real time with an amperometric probe. Exposure of granulocytes to 17beta-estradiol stimulated NO release within seconds in a concentration-dependent manner. The NO release was a...
متن کاملProton-sensing G protein-coupled receptor mobilizes calcium in human synovial cells.
Lowered extracellular pH in a variety of tissues is associated with increased tissue destruction and initiation of inflammatory processes. Although the acid-sensing receptors described previously are ion channels, we describe a G protein-coupled proton-sensitive receptor that stimulates Ca(2+) release from intracellular stores in a tumor-derived synoviocyte cell line (SW982) and in primary cult...
متن کاملExtracellular ATP activates different signalling pathways in rat Sertoli cells.
1. The present study describes effects of extracellular ATP (ATPe) on plasma membrane potential and cytoplasmic Ca2+ concentrations ([Ca2+]i) in rat Sertoli cells. Sertoli cells in suspension were stimulated with ATPe and other nucleotides and ionic changes were monitored utilizing the fluorescent dyes bis-oxonol and fura-2/AM. ATPe induced a prompt plasma membrane depolarization which was depe...
متن کامل